
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Using Depth First Search on Minimax Algorithm for

Optimal Move Sequence in Chess Endgames

Ikhwan Al Hakim – 135221471

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
113522147@std.stei.itb.ac.id

Abstract— This paper explores the application of Depth First

Search (DFS) within the Minimax algorithm to determine

optimal move sequences in chess endgames. The Minimax

algorithm, traditionally used for decision-making in two-player

games, evaluates moves by simulating possible future game

states. By integrating DFS, we aim to enhance the efficiency of

this algorithm in the context of chess endgames, where the search

space is vast but finite. Our approach leverages the depth-first

traversal capabilities of DFS to prioritize deeper exploration of

promising moves, thereby improving the accuracy of optimal

move identification.

Keywords—Depth First Search, Minimax Algorithm, Chess

Endgames, Optimal Move Sequence

I. INTRODUCTION

Chess, a game of strategic complexity and depth, has long
been a subject of interest for both human players and artificial
intelligence researchers. The endgame phase, characterized by
fewer pieces on the board and a higher reliance on precise
calculations, presents unique challenges and opportunities for
algorithmic analysis. Traditional methods for determining
optimal moves in chess endgames involve exhaustive search
techniques, which can be computationally intensive and time-
consuming.

The Minimax algorithm is a fundamental approach used in
game theory for decision-making in two-player games,
including chess. It operates by simulating all possible moves
and counter-moves to determine the best strategy for a player,
assuming optimal play from both sides. However, as the
complexity of the game increases, the efficiency of the
Minimax algorithm becomes a critical concern.

To address this issue, we propose integrating Depth First
Search (DFS) with the Minimax algorithm to enhance its
performance in chess endgames. DFS, known for its ability to
explore deep into search trees, allows for a more focused and
efficient traversal of the game state space. By leveraging DFS,
we aim to prioritize the examination of promising moves,
thereby reducing the computational burden and improving the
accuracy of the Minimax algorithm.

II. THEORETICAL BASIS

A. Chess

Chess is a strategic two-player board game that has
been played for centuries, characterized by its deep
complexity and intellectual challenge. The game is played

on an 8x8 square board, with each player controlling an
army of 16 pieces: one king, one queen, two rooks, two
knights, two bishops, and eight pawns. The objective is to
checkmate the opponent's king, putting it in a position

where it cannot escape capture.

Figure 1. Chess Board

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/lularobs

/php6RFk0y.png

Chess involves a combination of tactics and strategy.
Tactical play focuses on short-term moves and immediate

threats, such as capturing opponent pieces or creating threats
that must be responded to. Strategic play, on the other hand,
involves long-term planning and positioning, aiming to control
key areas of the board, improve piece activity, and create
enduring advantages that can be leveraged later in the game.

1) Pieces
The game starts with a well-defined initial setup and

proceeds through a series of turns, where players move

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

their pieces according to specific rules. Each type of piece
has its own unique movement patterns.

a) King

The king can move one square horizontally,
vertically, or diagonally. The king cannot move into a
square that is under attack by an opponent's piece, as

this would put it in check.

Figure 2. King’s Movement in Chess

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpmVRKYr.png

b) Queen

 The queen can move any number of squares in any

direction. It combines the powers of both the rook and
the bishop, making it the most powerful piece in terms

of mobility.

Figure 3. Queen’s Movement in Chess

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpCQgsYR.png

c) Rook

 The rook can move any number of squares

horizontally or vertically.

Figure 4. Rook’s Movement in Chess

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpfyINI1.png

d) Bishop

 The bishop can move any number of squares
diagonally. Each bishop is restricted to one color of

squares (light or dark) for the entire game.

Figure 5. Bishop’s Movement in Chess

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/PeterDo

ggers/php4dzIxh.png

e) Knight

 The knight moves in an L-shape. The knight is the

only piece that can "jump" over other pieces, meaning it
can move to a square even if there are pieces in

between.

Figure 6. Knight’s Movement in Chess

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpVuLl4W.png

f) Pawn

 Pawns move forward one square, but capture

diagonally. On their first move, pawns have the option

to move forward two squares.

Figure 7. Pawn’s Movement in Chess

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpEH1kWv.png

Pawns have two special moves, namely en passant and
promotion.

a. En Passant
If a pawn moves two squares forward from its
starting position and lands beside an opponent's
pawn, the opponent's pawn can capture it as if it

had moved only one square.

Figure 8. En Passant

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpQ4CGRG.png;

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

php3fpaGV.png

b. Promotion

When a pawn reaches the opponent's back rank
(eighth rank for White, first rank for Black), it can

be promoted to any other piece (queen, rook,
bishop, or knight), except another king.

Figure 9. Promotion

Source:

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpIImnmf.png;

https://images.chesscomfiles.com/uploads/v1/images_users/tiny_mce/pdrpnht/

phpZeuI6e.png

2) Phases

a) Opening

The opening phase of chess involves the initial
moves where players aim to develop their pieces to
active squares, control the center of the board, and

ensure the safety of their king, typically by castling.
Players often follow established opening principles and
theories to achieve these objectives, balancing
development, control, and king safety. Efficient and
effective piece development during the opening can set
the stage for a strong middlegame, while errors can lead

to early disadvantages. Common opening moves include
advancing the central pawns (e.g., e4, d4) and
developing knights and bishops to prepare for castling
and connecting the rooks.

b) Middlegame

The middlegame begins once both players have
completed their development and the board becomes a

battlefield of tactics and strategy. This phase is
characterized by intricate maneuvers, combinations, and
attacks as players seek to gain material or positional
advantages. Key elements of the middlegame include
planning and executing tactics like forks, pins, and
skewers, as well as formulating strategies that exploit

weaknesses in the opponent's position. Effective
coordination of pieces, dynamic play, and the ability to
foresee and counter the opponent's plans are crucial for
success in the middlegame.

c) Endgame

The endgame occurs when most pieces have been
traded off and the focus shifts to converting any

advantages into a win, often through precise and
methodical play. In this phase, the activity of the king
becomes paramount, often acting as a strong piece in
both offense and defense. Pawn promotion is a critical
aspect, where pawns advance to the back rank to be
promoted, typically to a queen, to gain decisive material

superiority. Endgame knowledge, including key

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

concepts like opposition, zugzwang, and the principle of
the square, is essential for converting small advantages
and achieving checkmate or securing a draw in
disadvantageous positions.

B. Depth First Search

Depth First Search (DFS) is a fundamental algorithm in
graph theory used for traversing or searching tree or graph
data structures. It starts at a chosen root node and explores as
far as possible along each branch before backtracking. This

approach is achieved by utilizing a stack data structure, either
through a recursive function call stack or an explicit stack. The
algorithm marks nodes as visited and proceeds to visit an
unvisited adjacent node, pushing each onto the stack. If it
reaches a node with no unvisited adjacent nodes, it backtracks
to the previous node, continuing this process until all nodes

reachable from the initial node have been visited. DFS is
known for its ability to provide a systematic way of exploring
all possible paths in a graph, making it useful for solving
problems like finding connected components, topological
sorting, and detecting cycles in directed graphs. However, it
may not always find the shortest path in unweighted graphs, as

it explores deeply along each branch before considering
sibling nodes.

Figure 10. Depth First Search Tree

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Depth-

first-tree.svg/1280px-Depth-first-tree.svg.png

C. Minimax Algorithm

The Minimax algorithm is a decision-making tool used
primarily in two-player zero-sum games like chess and tic-tac-
toe. It aims to minimize the possible loss for a worst-case
scenario, effectively maximizing the minimum gain. In
Minimax, one player is considered the maximizer, seeking to
maximize their score, while the other is the minimizer, aiming

to minimize the maximizer's score. The algorithm recursively
evaluates the game tree, where each node represents a game
state and edges represent possible moves. Starting from the
current state, it simulates all possible moves, generating a tree
of potential future states. At each level, it alternates between
the maximizer and minimizer until it reaches terminal nodes,

which are evaluated using a utility function that assigns a
numerical value to the outcome. The minimax value of a node
is determined by its children: the maximizer chooses the move

with the highest value, while the minimizer selects the one
with the lowest value. By backtracking from the terminal
nodes to the root, the algorithm identifies the optimal move for
the current player, ensuring the best achievable outcome

against a rational opponent.

Figure 11. Minimax Tree

Source:

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Minimax.svg/1

920px-Minimax.svg.png

III. METHODOLOGY

Before the author explain any of the method used in this
research, it should be noted that the experiment is done in the
following hardware specifications:

• Processor: AMD Ryzen 7 5800HS 3.2GHz

• RAM: 16 GB

A. Defining the Endgame Position

Before we start to make a move sequence for a particular
endgame position, we have to determine which endgame
position we want to use. For this experiment, the author will
use one of the most famous endgame position called “The
Lucena Position”.

Figure 12. The Lucena Position

Source: chess.com

Black is to play in this position and we will generate the most
optimal move sequence for white to win the game by assuming
both sides played the best move in each turn. Note that the
“best” move here is the best move generated by the minimax
tree and it can differ from the actual best move as this paper is
made in a small environment and a not-so-good hardware.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. Generating the Movement Tree

By using the position from figure 12, we can then generate
the movement tree that consists of the movements possible
from that position. The author is using Stockfish chess engine

to help generate the moves. Below is the code implementation
to generate the minimax tree from a certain position:
from stockfish import Stockfish

class Node:
 def __init__(self, sf, move):
 self.child = []
 self.sf = sf
 self.move = move
 self.eval = sf.get_evaluation()

 def add_child(self, n):
 self.child.append(n)

 def make_tree(self, depth, child_count):
 if (depth == 0):
 return

 moves = self.sf.get_top_moves(child_count)
 for move in moves:
 new_sf =
Stockfish(path="./stockfish/stockfish-windows-x86-64-
avx2.exe")

new_sf.set_fen_position(self.sf.get_fen_position())

new_sf.make_moves_from_current_position([move['Move']])
 move_temp = self.move.copy()
 move_temp.append(move['Move'])
 child = Node(new_sf, move_temp)
 self.add_child(child)
 child.make_tree(depth-1, child_count)
 del move_temp
For the sake of calculation simplicity, the author will create
the tree with a depth of only 3 and each node will only have 2
children.

fen = "4K3/4P1k1/8/8/8/8/7R/5r2 b - - 0 1"
stockfish = Stockfish(path="./stockfish/stockfish-
windows-x86-64-avx2.exe")
stockfish.set_fen_position(fen)
root = Node(stockfish, [])
root.make_tree(3, 2)

C. Calculating the Minimax Value

This function will generate the minimax value by using
depth first search. The minimax value will differ depending on
which side is currently playing. Because of that, the author
will add a distinguishing variable to distinguish the minimax
function result according to whose turn it is.
def minimax(node, depth, maximizing):
 if depth == 0 or len(node.child) == 0:
 return node

 if maximizing: # white turn
 if node.eval['type'] == 'cp' or
(node.eval['type'] == 'mate' and node.eval['value'] <=
0):
 extreme_node = minimax(node.child[0], depth-
1, False)
 for i in range (1, len(node.child)):
 minimax_node = minimax(node.child[i],

depth-1, False)
 if (minimax_node.eval['value'] >
extreme_node.eval['value']):
 extreme_node = minimax_node
 else:
 extreme_node = minimax(node.child[0], depth-
1, False)
 for i in range (1, len(node.child)):
 minimax_node = minimax(node.child[i],
depth-1, False)
 if (minimax_node.eval['value'] <
extreme_node.eval['value']):
 extreme_node = minimax_node
 else: # black turn
 if node.eval['type'] == 'cp' or
(node.eval['type'] == 'mate' and node.eval['value'] >=
0):
 extreme_node = minimax(node.child[0], depth-
1, True)
 for i in range (1, len(node.child)):
 minimax_node = minimax(node.child[i],
depth-1, True)
 if (minimax_node.eval['value'] <
extreme_node.eval['value']):
 extreme_node = minimax_node
 else:
 extreme_node = minimax(node.child[0], depth-
1, True)
 for i in range (1, len(node.child)):
 minimax_node = minimax(node.child[i],
depth-1, True)
 if (minimax_node.eval['value'] >
extreme_node.eval['value']):
 extreme_node = minimax_node
 return extreme_node

If white is currently playing, the maximizing variable will be
valued True and the function will return a value that’ll favor

the white side accordingly. In the contrary, if black is
currently playing, the maximizing variable will be valued
False.

IV. RESULT

By using the minimax function mentioned earliier, we can
then generate the minimax tree from the initial Lucena

Position.

Figure 13. Minimax Tree on Initial Position

Source: author’s documentation

The move sequence returned by this function on this position
is Ra1, Rg2+, Kh7. Then we play Ra1 as black on this

position. Below is the board after we play the move:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 14. The Board after Ra1

Source: chess.com

Then we repeat the same process. Generate the minimax
tree using the minimax function then play the move on the

board.

Figure 15. Minimax Tree on the Position After Ra1

Source: author’s documentation

Because it is white’s turn, we change the orientation from
finding the minimum value to finding the maximum value.

Thus the move sequence generated from this tree is Rg2+,
Kh6, Rg4. Below is the board after we played Rg2+:

Figure 16. The Board after Rg2+

Source: chess.com

Because this whole process will take a lot of time if we do it
manually, the author will automate all of the steps into a code

below:
def is_game_over(sf):
 info = sf.get_evaluation()
 return (info['type'] == 'mate' and info['value'] ==
0)

def print_board(sf):
 fen_to_ascii = {

 'R': '♜', 'N': '♞', 'B': '♝', 'Q': '♛', 'K': '♚',

'P': '♟',

 'r': '♖', 'n': '♘', 'b': '♗', 'q': '♕', 'k': '♔',

'p': '♙',
 }
 board = sf.get_board_visual()
 ascii_board = ""
 for i in range (len(board)):
 if i + 31 >= len(board):
 ascii_board += board[i]
 else:
 ascii_board += fen_to_ascii.get(board[i],
board[i])
 return ascii_board

fen = "4K3/4P1k1/8/8/8/8/7R/5r2 b - - 0 1"
white = False
while True:
 stockfish = Stockfish(path="./stockfish/stockfish-
windows-x86-64-avx2.exe")
 stockfish.set_fen_position(fen)
 root = Node(stockfish, [])
 root.make_tree(3, 2)

stockfish.make_moves_from_current_position([minimax(root,
3, white).move[0]])
 print(print_board(stockfish))
 fen = stockfish.get_fen_position()
 print(fen)

 if white:
 white = False
 else:
 white = True

 if (is_game_over(stockfish)):
 print("game over")
 break

Then the code will generate these move sequence:
1. Ra1 2. Rg2+ 3. Kf6 4. Kf8 5. Ra8+ 6. e8=R 7. Ra4 8.
Rf2 9. Kg6 10. Re1 11. Ra8+ 12. Ke7 13. Kh5 14. Rg2 15.
Ra4 16. Rh1 17. Rh4 18. Rxh4 19. Kxh4 20. Rg6 21. Kh5 22.
Kf6 23. Kh4 24. Kg7 25. Kh3 26. Kf7 27. Kh2 28. Rg7 29.
Kh3 30. Ke7 31. Kh4 32. Kf6 33. Kh5 34. Rg6 35. Kh4 36.
Ke6 37. Kh5 38. Kf6 39. Kh4 40. Ke6 41. Kh3 42. Ke5 43.
Kh2 44. Rg7 45. Kh3 46. Kf4 47. Kh2 48. Kf3 49. Kh1 50.
Kf2 51. Kh2 52. Rh7#

Figure 17. White Winning the Game

Source: chess.com

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

The length of the winning sequence for white is 52, which
is pretty normal for a king and rook endgame considering both
sides is guaranteed to do the best move in each turn.

V. CONCLUSION

From the conducted experiment, it is safe to say that the
combination of depth first search and minimax algorithm can
be used to generate the most optimal move sequence in chess
endgames. However, the minimax movement tree in this
experiment is so limited in terms of size and depth. Due to the

constraint, the author is certain that the result of this
experiment can still be improved with more complex tree in a
better and more complex environment.

VI. SUGGESTION

The author’s suggestion for future researchers that want to

continue this experiment is to do it in a more high-end
hardware so that the computer can handle a bigger and deeper
movement tree, thus be able to generate a better and shorter
move sequence to obliterate the opposing side faster.

REPOSITORY AND VIDEO LINK

https://github.com/Nerggg/Stockfish_Minimax_Simulation/

ACKNOWLEDGMENT

The author extends heartfelt gratitude to Allah, the Most
Merciful and Compassionate, for providing the strength,
wisdom, and perseverance to undertake this scholarly journey.
Acknowledgment is due to the esteemed lecturer, Dr. Ir.
Rinaldi Munir, M.T., Ir. Rila Mandala, M.Eng., Ph.D., and
Monterico Adrian, S.T., M.T., whose invaluable guidance,
insightful feedback, and unwavering support have profoundly
shaped the quality of this work. The author is profoundly
grateful to their family for the unwavering love and
encouragement that served as pillars of strength, and to friends,

whose inspiration and camaraderie enriched the entire process.
The author recognizes and appreciates the collective
contributions, big and small, from everyone involved, and
hopes that this work, guided by divine grace, contributes
positively to the broader realm of knowledge.

REFERENCES

[1] Munir, Rinaldi. (2020). “Breadth/Depth First Search (BFS/DFS) (Bagian

2)” . https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/BFS-DFS-2021-Bag2.pdf (accessed on 9 th June 2024)

[2] (2023). CHESS AI: Machine learning and Minimax based Chess Engine.

doi: 10.1109/iconat57137.2023.10080746 (accessed on 9th June 2024)

[3] Yang, Hu., Guoyu, Zuo. (2019). Expectation Minimax Algorithm for the

Two-Player Military Chess Game. doi: 10.1109/CCDC.2019.8833085

(accessed on 11 th June 2024)

[4] Mitsuru, Shibayama. (2015). Minimax approach to the n-body

problem. 221-228. doi: 10.2969/ASPM/06410221 (accessed on 11th

June 2024)

STATEMENT

I, the individual signing below, affirm that the content
presented in this document is an original creation authored by

me. It is not a derivative work, translation of another
document, or a product of plagiarism.

Bandung, 12th June 2024

Ikhwan Al Hakim, 13522147

